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The general multiconfiguration self-consistent-field method is presented along the density matrix 
formalism. The proposed optimization procedure for orbitals makes use of an orthogonat transfor- 
mation in the space spanned by the fixed basis set. Acting on the unconstrained parameters of the 
transformation a direct minimization of the energy expression is performed using a gradient approach. 
A similar method may also be applied to the optimization of the expansion coefficients. The method 
works not only for the ground state of a given system, but also for any excited state, yielding an upper 
bound to the true energy of the considered state. 
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1. Introduction 

In molecular wavefunction calculations it is usual to start from an approximate 
self-consistent field (SCF) function, formed by one determinant of occupied mole- 
cular orbitals (MO), and to improve the results by configuration interaction (CI), 
expanding the wavefunction as linear combination of  several configurations. If  the 
full expansion is used the choice of MO's is not important, but if the expansion is 
truncated by admitting only certain types of  configurations, as is normally the 
case, the accuracy of the wavefunction then depends critically on orbital forms. 
As is well known, the multiconfiguration SCF (MC SCF) theory is concerned with 
the general variation problem of optimizing both orbitals and expansion co- 
efficients. 

The conventional process [1, 2], which recently has been extended to include 
excited states computation [2b], consists of solving first the secular equation for 
expansion coefficients and thereafter the Fock equations for the orbitals (in general 
one for each orbital) with fixed expansion coefficients and repeating this process 
until convergence. It should be stressed that, apart from other not quite satis- 
factory features [4], the procedure just mentioned may present convergence prob- 
lems in finding SCF solutions to coupled equations with fixed CI coefficients 
[ 1 c, 2a]. In contrast to the usual approach a gradient method for a direct minimiza- 
tion of the energy functional [3-5, 10] is free of convergence difficulties and seems 
to be a promising method of calculating MC SCF wavefunctions. 
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In the line of direct minimization by a gradient approach the procedure we 
present in this paper consists in employing a suitable orthogonal transformation 
of basis orbitals : a transformation of this kind has been previously applied to the 
minimization of ground state energy of closed and open shell systems [6] (here- 
after referred to as I) and now the method will be extended to cover the general 
energy expression of the MC SCF theory, both for the ground and excited elec- 
tronic states of any molecular system (yielding an upper bound to the true energy). 

A difference, to mention only one, from other approaches which have some 
bearing with the present one [3-5] is that the orthogonality of the transformation 
matrix is rigorously conserved during the iterations, so that no orthogonality 
restoring is needed for the orbitals. 

2. Formulation of  the Problem 

Let {q)z} (l= 1, 2 . . . .  no) be a set of n~ configurations (defined as in [7]) built 
from a set of n orthonormal orbitals {A, B, C, D . . .  }, collected into a 1 x n row 
vector IA) = (A B C . . . ) .  Due to the assumed orthonormality of In > orbitals, the 
set {45l} is also orthonormal. If I~)  is the 1 x n~ row formed by the functions 4~, 
the MC SCF wavefunction for the state s is expressed by the expansion 

nc 

7t(*)= ~ al*)~t=l~)a(*), ( s = l  . . . .  n~) (I) 
l:l 

where a (~) is the n c x 1 column vector of the expansion coefficients al ~), satisfying 
the orthonormality conditions a(S)ta(S')= 6s,,. 

In what follows the superscript (s) means that reference is made to a particular 
state, i.e. to a particular set a (s) of expansion coefficients (associated, as it will be 
said, with an energy value E(S)). 

Each matrix element of the electronic hamiltonian H between configurations 
can be written as [-3, 8] 

(~ , )HI+* ' ) - -  k PI~A<AIfIB) +1 ~, P*2~D, AB(ABICD)" (2) 
A , B  A , B , C , D  

They make up the CI matrix H". Here the coefficients P~tBA of one-electron in- 
tegrals (AlflB) ( f  is the one-electron core part of the hamiltonian) and those 

ll" P2cD, AB of the two-electron integrals (AB] CD) are the elements of two transition 
density matrices P]*' and P~' respectively. These density matrices do not depend 
on variationally determined quantities (i.e. expansion coefficients and orbitals) 
and contain only fixed numerical elements related to orbital occupation numbers, 
spin coupling schemes, etc. A general determination of these coefficients when the 
configurations are (S, M) spin eigenfunctions is found, for instance, in [8, 9]. 
Following McWeeny [3, 8] the energy is then expressible in terms of one-electron 
n x n density matrix P~) and two-electron n 2 x n 2 density matrix (a supermatrix) 
PC2S), whose elements ~'(~) and P(~)  depend quadratically on the expansion - -  l A B  - -  2CD,  A B  

coefficients a} s) of the state s: 
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l , l '  l , l '  
(3) 

p(2~) = ~ ,,(s).(~)*pu' P(s) - 2 ,,(s),,(~)*pu' ~1 ~1 ~ 2  , 1 2 A B ,  C D - -  ~1 "~l' ~ 2 A B ,  CD" 
l , l '  l , l '  

For the development to be made it is useful, especially in connection with 
supermatrix products, to introduce for the trace operation the symbols Z1 and Z2, 

according to the definition given, for instance, by McWeeny [3a] (for easy refer- 
ence see Appendix 2). The energy expression may then be written in the form 
(MO basis) 

E(S)  = )~I(P(~ ~)W~ + �89 ~2(P~)g"~ (4) 

where f,.o is the n • n matrix of one-electron integrals and gmO is the n z x s:  super- 
matrix of two-electron integrals. 

As is well known, the one- and two-particle spinless density matrices P(1 ~) and 
P(2 ~) are related by [3a] 

Zz(P~ )) = (n~ - 1)P? ) , (5) 

ne being the number of particles (electrons) of the system. 
The basic problem of MC SCF theory is to determine, by the minimum energy 

criterion, the best wavefunction of the form (1) considering as variables to opti- 
mize both the expansion coefficients and the orbitals in the configurations. 

A common method to calculate MC wavefunctions consists in optimizing 
turn-by-turn the coefficients al ~) and the orbitals {A}. For a given set of orbitals, 
the optimum values of a (s) are determined by solving the secular equations for the 
CI matrix H a, a (~) being the eigenvector associated with the eigenvalue E (s), 

Haa (s) ___ E(S)a(S). 

Determining the CI expansion coefficients is always a convergent step because 
the energy must lower. Instead, the major problem of MC SCF theory, which may 
present convergence difficulties, is to optimize, for any given set of expansion co- 
efficients, the orbitals A, B, C . . .  which appear in (2) and (4). The method pre- 
sented in the next section is to use the parametrization of an orthogonal matrix 
U(X) performing variations with respect to the independent variables X upon 
which the orthogonal matrix depends. 

About the expansion coefficient optimization, since the energy is just of the 
proper bilinear form, surely the natural and best way to follow is to solve the 
associated secular problem. However, there is the possibility to find them by a 
method similar to that proposed for the orbital optimization : the method avoids 
the solution of the CI secular equations, but is equivalent to it. An outline is given 
in Appendix 1. 

3. The Variational Equations 

Let us consider the optimization of the orbitals. For this purpose, the co- 
efficients of the one- and two-electron integrals in (4), i.e. P(1 s) and P(2 s) matrices, 
are regarded as numerical constants, and an independent variation A ~ A + 6 A  . . . .  
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of the orbitals is performed. To cast the procedure in a form of practical use, a 
LCAO-type approximation is introduced, constructing the n orbitals ]A) as linear 
combinations of  m basis atomic orbitals (AO) cq, e 2 , . . ,  am, assumed to be 
orthonormal.  Thus, if I~) is the 1 x m row vector formed by the orbitals er (r for 
simplicity), 

IA)=]c~)T, e.g. A =  rTrA (with (c~le)=lm), (6) 
r = l  

T being the m x n matrix which collects the LCAO coefficients Tra. 
The energy expression (4) takes now the form (AO basis) 

E(s) = Z1 (P(1 s)"~ + �89 Z2 (p(s)aog), (7) 

in which the one- and two-electron integrals and the density matrices are defined 
over the fixed basis functions r, s, t, u . . .  ; namely 

f is the m x m matrix of  elements (rills>, 
g is the m 2 x m 2 supermatrix of elements (rsltu), 
p~,)ao = Tp~S)T+ is a m x m matrix, 

P(2 s)a~ = (T x T)P(2')(T x T)* is a m 2 x m 2 supermatrix. (8) 

p~s)ao and p~s)ao are the transformed density matrices appropriate to the AO basis. 
Since T ' T =  1,, the relation (5) linking p~s) and P~2 s) remains valid also for p~,),o 
and p~s)ao (Appendix 2). 

A corresponding form, analogous to (7), is assumed in the AO basis by the 
H a matrix elements (2). 

The variational problem now involves the elements of the unknown matrix T, 
or of the matrices p(~),o and P~2 ')"~ linked to it through the relations (8). The matrix 
T has to be determined in such a way to minimize E (~), subject to the orthonormality 
constraints 

T*T = 1,. (9) 

To this aim, we introduce an orthogonal rn x m matrix U(X) of  the form (see I) 

U ( X ) = - I + 2 p - 1  with P = I + X - X ,  

which depends on the m(m-1)/2 elements of  the skew-symmetric matrix 
S = X - X; X is a completely arbitrary m x m matrix to be chosen in such a way to 
minimize E (~) by a descent procedure. To incorporate the orthonormality con- 
straints the matrix T transformed from T is taken as T ~ T = UT. According to 
LCAO approximation this is equivalent to 

IA > = [e)T -~ [A) = Ic~>UT: (10) 

this transformation amounts to perform a unitary mixing in the space spanned by 
the m fixed basis orbitals ]~). The density matrices are transformed into 

P(ls)a~176 P(2")"~ x U)P(2~)"~ x U), (11) 
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and the expression (7) of the energy is transformed accordingly into ~(s) p]s),o 
and P(2 s)"~ being replaced by l~] ~)"~ and p~),o. 

Since the transformation matrix is orthogonal, the relation (5) holds true also 
for the transformed matrices (11) (Appendix 2). 

The first-order variation with respect to the variables X is readily worked out, 
taking into account the properties of the direct product x and of the operations 
Z1 and ~2 listed in Appendix 2. If U --> U + 6U, with 

6U = - 2P- a 6XP- 1 + 2P- 16XP- 1 

after some straightforward algebra the corresponding first-order change in E(S) 
turns out to be 

,~xE(~)= 4Z1 {F'- l [ e ( l s ) " ~  + z z ( e ( z S ) " ~  - re(is) "o _ x2(gp(z~)"~ - 16X}. 

Since Z 1 is nothing but the trace operation, the energy gradient is expressed by the 
skew-symmetric matrix 

G x :  4 t ' - I  [p]s)aof + Z2(P(2s)aog) _ f~(s)ao - -  Zz(gp(~)ao)]p- 1 (12) 

The m x m matrix Z2 (. �9 .) has elements given by 

--(s)ao LvsT(s) _~.-- kL2,0t 2 v ~ ,  [D(s)a~ Pz,,,,,duvlst> (r ,  s - -  1 , . . .  m ) ,  
t, u, r) 

and is the correspondent of the electron interaction matrix Z introduced by 
McWeeny [8, 3b, 3c] : the connection is established exactly in Appendix 3. 

To find a stationary energy we have to solve the equations 

Gx=O,  i.e. F']s)"~176 (13) 

which provide us just enough conditions for the determination of the r e ( m -  1)/2 
independent variables of the orthogonal matrix U(X). 

Also the elements of the second energy derivatives have been calculated, but 
they are not reported in this paper. 

4. Computation Scheme 

To solve these equations a direct minimization of the energy may be per- 
formed by an iterative process in which successive adjustments ~X are made, so 
as to follow some suitable descent path on the energy surface, until Eqs. (13) turn 
out to be satisfied. 

The overall MC SCF computation procedure of reaching an energy minimum 
may be summarized as follows. At first, an initial guess for the orbital coefficient 
matrix T (first approximation orbitals), satisfying the condition (9), should be 
made in some way, e.g. by diagonalizing the core hamiltonian of the system. 
Then, with T held fixed, the corresponding first approximation expansion co- 
efficients a (~) are determined, together with all the other orthonormal a~')'s that 
are desired, resolving the CI secular equations for H a. Now, holding a (s) fixed, the 
optimization for orbitals IA) is started with X =  O, the gradient Gx is computed 
and a new point X' is found along the prescription of the algorithm chosen. The 
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corresponding  or thogona l  matrix U ' = U ( X ' )  and the t ransformed matrices 
T ' =  U'T,  p~,)oo' = U,p~),ol~, and e(2 s)a~ (Utx  U')p~s)~~ • I~l') are computed ,  to- 
gether with the new gradient matrix G'~ and the energy E~)' (expression (7)). The 
iteration is repeated up to a prescribed precision. When  self-consistency is reached, 
then, regarding now fixed T', p~)~0' and ~ ) a o ' ,  the opt imizat ion for  a new set a <') 
(and a ~')) is performed by solving the eigenvalue problem o f  the CI matrix H a' 
cor responding to the orbitals just found.  With the new computed  a <*) the orbital 
opt imizat ion is run over again. The whole process continues until [a (s)new- a(S)~ 
vanishes to any desired accuracy.  It is to be stressed that  the computa t ion  o f  the 
energy is not  wanted in every iteration, because the convergence test can be made 
on the gradient modulus ,  al though,  o f  course, this is no t  always sufficient. 

The opt imizat ion procedure  is similar to that  described in I :  the inverse matrix 
P -  ~ may  be computed  iteratively and for the minimization,  e.g. a variable metric 
a lgor i thm may  be used. More  details on these points  are found there. 

A b o u t  the excited electronic states, it is wor th  not ing that  upper  bounds  to their 
energies automat ical ly  come out o f  the secular equat ions;  but  in order  to get the 
lowest possible upper  bound  the energy of  each state must  be extremalized. N o w  
this is certainly possible if the energy of  the considered state s corresponds to one 
o f  the roots  o f  the secular equat ion for CI expansion coefficients, for  the reason 
that  these roots  are upper  bounds  to the true energies and can always be numbered  
in the order  o f  increasing energy [11]. 

Needless to say, once the one- and two-particle density matrices are obtained, 
the average value o f  any physical quanti ty,  represented by a Hermit ian one- or  
two-particle operator ,  may  be computed  for the g round  or  excited states o f  the 
system. 

5. Conclusion 

The gradient approach  to M C  SCF wavefunct ion and .ene rgy  calculations 
outlined above seems to present some points o f  interest: besides its relative sim- 
plicity, the more  appealing feature is its guarantee to be a general convergent  pro- 
cedure bo th  for  g round  and excited states. 

In a for thcoming  paper  the general approach  here proposed  will be developed 
for  the case o f  CI  a m o n g  all the single-excited configurat ions o f  closed shell sys- 
tems and some numerical  aspects and results will be discussed. 

Appendix 1 

In this appendix a gradient method is outlined for determining the expansion coefficients a <s), 
which is equivalent to the solution of CI secular equations. Defined the matrices R~S)=a~S)a <s" 
(s = 1 . . . .  n c ; they are Hermitian, idempotent and mutually exclusive, RtaS)R~ s') = R~6~s , ,  and trR~ s)= 1) 
the energy (7) can be re-written as 

ECS~ = tr(R~S)H~). 

We introduce the orthogonal n c x n~ matrix U~(Y) = - 1 + 2P~- a, where P, = I + Y - r162 function of the 
n~(n~ - 1)/2 elements of the skew-symmetric matrix Y - r162 Y being a completely arbitrary n~ • n~ matrix, 
and consider the transformation (see I) R~! = U,R~)U~, Letting U~ ---, U~ + 6U~, the first-order varia- 
tion of the energy E<~) with respect to the Y variables permits us to calculate the energy gradient matrix 
(a n~ • n~ skew-symmetric matrix) 
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~ - 1 - - ( s )  a a - - ( s )  - 1 Gy=4Pa [ R a i l  - H R  a l P .  . 

Then the stationary condition for [~s) is the commutability relation 

R~)H '~ - HaR~ sl = 0. 

Summing over s, the overall condition is obtained 

R ~ H ~ - H " R , = 0  ( w i t h R , = ~ R ~  ~), and R2=R~, trR,=n~), 
s=~ 

which, as shown in [8], is equivalent to the usual secular equations Haa = aE with E = a*H"a. 
The question which of these two equivalent ways is more convenient to follow is left open, the 

choice being largely a matter of computational convenience. 

Appendix 2 

In this appendix the definitions and some properties of operations Xl and ~2 are listed for easy 
reference. ~1 is the usual operation of trace defined for normal matrices whose rows and columns are 
indicated by single labels. X2 represents the operation consisting in replacing each block of a super- 
matrix M with its trace so that a matrix is built which has elements formed by the block traces, i.e. 
[Z2(M)]Ij = Z Mik, jk" 

The following properties are easily established (A, B, C, D are matrices, M, N supermatrices): 

ZIZ2(MN) = ZIZ2(NM), Z2[(1 • A)M] = z2[M(1 • A)], 

)/2 [(A x I)M] = Azz(M), zz[M(A x 1)] = [ z2(M)]A, 

(A • B)ij, kz = (B • A)jl, Ik, (A x B)(C x D) - (AC) • (BD). 

If P1 =kz2(P2) (where P1 is a matrix, P2 a supermatrix and k a constant), the same relation holds 
for the matrices PI  =UPII~ and P2 = ( U  • U)P2(I~J • l J) transformed by an orthogonal matrix U: 

Z2[(U • U)Pz(IJ • IJ)] =U{z2[(I • U)P2(! ::< [~)]}lJ =U[/2(P2)]I0. 

The same relation holds true even when the matrix U is replaced by a rectangular m • n, say, 
matrix T, provided T*T = 1,. 

Appendix 3 

Some matrices found in this paper have their equivalents in the MC SCF theory given by McWeeny 
e.g. in Ref. [3c]. Dropping, for simplicity, the state label s we get 

V-= fTP1T ~ + z2[g(T • T)P2(T • I")*] = ~fTP 1 + z2[g(T • T)P2(i x T*)] }T* ; 

this is Eq. (17) of [3c], being Z =-X21-g(T • T)P2(1 • T*)]. The stationary condition (13) means that the 
matrix V must be Hermitian, and is the generalized form of the Brillouin theorem (Eq. (26) of [2c] ; see 
also [5a]). 
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